ในคณิตศาสตร์ ฟังก์ชัน คือ ความสัมพันธ์ จาก เซต หนึ่ง (โดเมน)
ไปยังอีกเซตหนึ่ง (โคโดเมน ไม่ใช่ เรนจ์) โดยที่สมาชิกตัวหน้าไม่ซ้ำกัน
ความคิดรวบยอดของฟังก์ชันนี้เป็นพื้นฐานของทุกสาขาของคณิตศาสตร์และวิทยาศาสตร์เชิงปริมาณ
แนวคิดที่สำคัญที่สุดคือ ฟังก์ชันนั้นเป็น "กฎ" ที่กำหนด
ผลลัพธ์โดยขึ้นกับสิ่งที่นำเข้ามา ต่อไปนี้เป็นตัวอย่าง
แต่ละคนจะมีสีที่ตนชอบ (แดง, ส้ม, เหลือง, เขียว, ฟ้า, น้ำเงิน, คราม หรือม่วง) สีที่ชอบเป็นฟังก์ชันของแต่ละคน
เช่น จอห์นชอบสีแดง แต่คิมชอบสีม่วง ในที่นี้สิ่งที่นำเข้าคือคน และผลลัพธ์คือ 1
ใน 8 สีดังกล่าว
มีเด็กบางคนขายน้ำมะนาวในช่วงฤดูร้อน
จำนวนน้ำมะนาวที่ขายได้เป็นฟังก์ชันของอุณหภูมิภายนอก ตัวอย่างเช่น
ถ้าภายนอกมีอุณหภูมิ 85 องศา จะขายได้ 10 แก้ว แต่ถ้าอุณหภูมิ 95 องศา จะขายได้ 25
แก้ว ในที่นี้ สิ่งที่นำเข้าคืออุณหภูมิ และผลลัพธ์คือจำนวนน้ำมะนาวที่ขายได้
ก้อนหินก้อนหนึ่งปล่อยลงมาจากชั้นต่างๆของตึกสูง
ถ้าปล่อยจากชั้นที่สอง จะใช้เวลา 2 วินาที และถ้าปล่อยจากชั้นที่แปด จะใช้เวลา
(เพียง) 4 วินาที ในที่นี้ สิ่งนำเข้าคือชั้น และผลลัพธ์คือระยะเวลาเป็นวินาที
ฟังก์ชันนี้อธิบายความสัมพันธ์ระหว่าง
เวลาที่ก้อนหินใช้ตกถึงพื้นกับชั้นที่มันถูกปล่อยลงมา (ดู ความเร่ง)
"กฎ" ที่นิยามฟังก์ชันอาจเป็น สูตร, ความสัมพันธ์
(คณิตศาสตร์) หรือเป็นแค่ตารางที่ลำดับผลลัพธ์กับสิ่งที่นำเข้า
ลักษณะเฉพาะที่สำคัญของฟังก์ชันคือมันจะมีผลลัพธ์เหมือนเดิมตลอดเมื่อให้สิ่งนำเข้าเหมือนเดิม
ลักษณะนี้ทำให้เราเปรียบเทียบฟังก์ชันกับ "เครื่องกล" หรือ
"กล่องดำ" ที่จะเปลี่ยนสิ่งนำเข้าไปเป็นผลลัพธ์ที่ตายตัว
เรามักจะเรียกสิ่งนำเข้าว่า อาร์กิวเมนต์ (argument) และเรียกผลลัพธ์ว่า
ค่า (value) ของฟังก์ชัน
ชนิดของฟังก์ชันธรรมดาเกิดจากที่ทั้งอาร์กิวเมนต์และค่าของฟังก์ชันเป็นตัวเลขทั้งคู่
ความสัมพันธ์ของฟังก์ชันมักจะเขียนในรูปสูตร
และจะได้ค่าของฟังก์ชันมาทันทีเพียงแทนที่อาร์กิวเมนต์ลงในสูตร เช่น
ซึ่งจะได้ค่ากำลังสองของ x ใดๆ
โดยนัยทั่วไปแล้ว ฟังก์ชันจะสามารถมีได้มากกว่าหนึ่งอาร์กิวเมนต์ เช่น
เป็นฟังก์ชันที่นำตัวเลข x และ y มาหาผลคูณ
ดูเหมือนว่านี่ไม่ใช่ฟังก์ชันจริงๆดังที่เราได้อธิบายข้างต้น เพราะว่า
"กฎ" ขึ้นอยู่กับสิ่งนำเข้า 2 สิ่ง อย่างไรก็ตาม ถ้าเราคิดว่าสิ่งนำเข้า
2 สิ่งนี้เป็น คู่อันดับ (x, y) 1 คู่
เราก็จะสามารถแปลได้ว่า g เป็นฟังก์ชัน
โดยที่อาร์กิวเมนต์คือคู่อันดับ
และค่าของฟังก์ชันคือ
ในวิทยาศาสตร์
เรามักจะต้องเผชิญหน้ากับฟังก์ชันที่ไม่ได้กำหนดขึ้นจากสูตร
เช่นอุณหภูมิบนพื้นผิวโลกในเวลาใดเวลาหนึ่ง นี่เป็นฟังก์ชันที่มีสถานที่และเวลาเป็นอาร์กิวเมนต์
และให้ผลลัพธ์เป็นอุณหภูมิของสถานที่และเวลานั้นๆ
เราได้เห็นแล้วว่าแนวคิดของฟังก์ชันไม่ได้จำกัดอยู่แค่การคำนวณด้วยตัวเลขเท่านั้น
และไม่ได้จำกัดอยู่แค่การคำนวณด้วย แนวคิดของคณิตศาสตร์เกี่ยวกับฟังก์ชัน
เป็นแนวคิดโดยทั่วไปและไม่ได้จำกัดอยู่แค่สถานการณ์ที่เกี่ยวข้องกับตัวเลขเท่านั้น
แน่นอนว่าฟังก์ชันเชื่อมโยง "โดเมน" (เซตของสิ่งนำเข้า) เข้ากับ
"โคโดเมน" (เซตของผลลัพธ์ที่เป็นไปได้)
ดังนั้นสมาชิกแต่ละตัวของโดเมนจะจับคู่กับสมาชิกตัวใดตัวหนึ่งของโคโดเมนเท่านั้น
ฟังก์ชันนั้นนิยามเป็นความสัมพันธ์ที่แน่นอน ดังที่จะกล่าวต่อไป
เป็นเหตุจากลักษณะทั่วไปนี้
แนวคิดรวบยอดของฟังก์ชันจึงเป็นพื้นฐานของทุกสาขาในคณิตศาสตร์
สมาชิก ใน สัมพันธ์กับ และ ใน ความสัมพันธ์นี้เป็นฟังก์ชันหลายค่า แต่ไม่เป็นฟังก์ชัน
สมาชิก 1 ใน ไม่สัมพันธ์กับสมาชิกใดๆเลยใน ความสัมพันธ์นี้เป็นฟังก์ชันบางส่วน แต่ไม่เป็นฟังก์ชัน
ความสัมพันธ์นี้เป็นฟังก์ชันจาก ไปยัง เราสามารถหานิยามฟังก์ชันนี้อย่างชัดแจ้งได้เป็น หรือเป็น
กราฟของฟังก์ชัน f คือเซตของคู่อันดับ (x, y (x)) ทั้งหมด
สำหรับค่า x ทั้งหมดในโดเมน X มีทฤษฎีบทที่แสดงหรือพิสูจน์ง่ายมากเมื่อใช้กราฟ
เช่น ทฤษฎีบทกราฟปิด ถ้า X และ Y เป็นเส้นจำนวนจริง
แล้วนิยามนี้จะสอดคล้องกับแนวคิดของกราฟ
กราฟของฟังก์ชันกำลังสาม
กราฟนี้เป็นฟังก์ชันทั่วถึงแต่ไม่เป็นฟังก์ชันหนึ่งต่อหนึ่ง
สังเกตว่าเมื่อความสัมพันธ์ระหว่างสองเซต X และ Y มักจะแสดงด้วยเซตย่อยของ
X×Y นิยามอย่างเป็นทางการของฟังก์ชันนั้นระบุฟังก์ชัน f ด้วยกราฟของมัน
การประกอบฟังก์ชัน
ฟังก์ชัน f: X → Y และ
g:Y → Z สามารถประกอบกันได้
ซึ่งจะได้ผลเป็นฟังก์ชันประกอบ g o f: X → Z ซึ่งมีนิยามคือ
(g o f) (x) = g (f (x)) สำหรับทุกค่าของ x ใน X
ตัวอย่างเช่น สมมติว่าความสูงของเครื่องบินที่เวลา t เป็นไปตามฟังก์ชัน
h (t) และความเข้มข้นของออกซิเจนในอากาศที่ความสูง x
เป็นไปตามฟังก์ชัน c (x) ดังนี้น (c o h) (t) จะบอกความเข้มข้นของออกซิเจนในอากาศรอบๆเครื่องบินที่เวลา
t
ฟังก์ชันผกผัน
ถ้าฟังก์ชัน f: X → Y เป็นฟังก์ชันหนึ่งต่อหนึ่งต่อเนื่อง
แล้ว พรีอิเมจของสมาชิก y ใดๆในโคโดเมน Y จะเป็นเซตโทน
ฟังก์ชันจาก y ∈ Y ไปยังพรีอิเมจ
f −1 (y) ของมัน คือฟังก์ชันที่เรียกว่า
ฟังก์ชันผกผัน ของ f เขียนแทนด้วย f −1
ตัวอย่างหนึ่งของฟังก์ชันผกผันสำหรับ f
(x) = 2x คือ f −1 (x)
= x/2 ฟังก์ชันผกผันคือฟังก์ชันที่ย้อนการกระทำของฟังก์ชันต้นแบบของมัน
ดู อิเมจผกผัน
ไม่มีความคิดเห็น:
แสดงความคิดเห็น